Lời giải:
Nếu \(n<2010\Rightarrow A<0\) (không thể là số chính phương)
Nếu \(n=2010,2011\Rightarrow A=0\in \text{scp}\) (thỏa mãn)
Nếu \(n\geq 2012\)
Đặt \(n-2012=a(a\geq 0)\). Khi đó:\(A=a(a+1)(a+2)\)
\(\Leftrightarrow A=(a^2+2a)(a+1)\)
Gọi \(d=\text{ƯCLN}(a^2+2a, a+1)\)
\(\Rightarrow \left\{\begin{matrix} a^2+2a\vdots d\\ a+1\vdots d\rightarrow a^2+a\vdots d\end{matrix}\right.\)
\(\Rightarrow a^2+2a-(a^2+a)\vdots d\Leftrightarrow a\vdots d\)
Mà \(a+1\vdots d\Rightarrow 1\vdots d\)
Hay \(a^2+2a, a+1\) nguyên tố cùng nhau. Do đó để \((a^2+2a)(a+1)\) là một số chính phương thì $a^2+2a$ và $a+1$ là những số chính phương.
Đặt \(a^2+2a=t^2\Leftrightarrow a(a+2)=t^2\)
Nếu \(a\) lẻ. Dễ thấy \((a,a+2)\) nguyên tố cùng nhau. Do đó bản thân mỗi số là một số chính phương.\(\Rightarrow a=m^2; a+2=n^2(m,n\in\mathbb{N})\)
\(\Rightarrow 2=n^2-m^2=(n-m)(n+m)\)
Vì \(n+m\geq n-m>0\Rightarrow \left\{\begin{matrix} n-m=1\\ n+m=2\end{matrix}\right.\Rightarrow 2n=3\Rightarrow n\not\in\mathbb{N}\)
(loại)
Nếu $a$ chẵn. Đặt \(a=2x\Rightarrow a(a+2)=t^2\Leftrightarrow 4x(x+1)=t^2\)
\(\Leftrightarrow x(x+1)=\left(\frac{t}{2}\right)^2\)
Dễ thấy $(x,x+1)$ nguyên tố cùng nhau. Do đó để tích hai số đó là một số chính phương thì bản thân mỗi số là số chính phương.
\(\Rightarrow x=m^2; x+1=n^2 (m,n\in\mathbb{N})\)
\(\Rightarrow 1=(n-m)(n+m)\)
Vì \(n+m\geq n-m>0\Rightarrow \left\{\begin{matrix} n-m=1\\ n+m=1\end{matrix}\right.\Rightarrow 2n=2\Rightarrow n=1\)
\(\Rightarrow x=0\Rightarrow a=0\)
Khi $a=0$ thì $a+1=1$ cũng là số chính phương (thỏa mãn)
Do đó \(n=2012\)
Vậy \(n\in\left\{2010; 2011; 2012\right\}\)