B1: GPT
a,\(\left\{{}\begin{matrix}x^2+y^2-x+y=2\\xy+x-y=-1\end{matrix}\right.\) c,\(\left\{{}\begin{matrix}x^3=5x+y\\y^3=5y+x\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\) d,\(\left\{{}\begin{matrix}x^2+y^4=20\\x^4+y^2=20\end{matrix}\right.\)
\(\frac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x+y}{\sqrt{xy}}+\frac{y}{x-\sqrt{xy}}-\frac{x}{\sqrt{xy}+y}\right)\).rut gon dum nha
cho hai số thực x,y thỏa mãn 2x+3y\(\le7\). Giá trị lớn nhất của biểu thức P=x+y+xy là
Cho x, y là các số thực thỏa mãn \(2\left(x^2+y^2\right)=xy+1\)
Chứng minh rằng \(\frac{18}{25}\le7\left(x^4+y^4\right)+4x^2y^2\le\frac{70}{33}\)
Giải hệ sau
\(\left\{{}\begin{matrix}\sqrt{\dfrac{x}{y}+\sqrt{\dfrac{y}{x}}}=\dfrac{7}{\sqrt{xy}+1}\\x\sqrt{xy}+y\sqrt{xy}=78\\x>0\\y>0\end{matrix}\right.\)
Cho 3 số x,y,z khác 0 thỏa mãn \(x^2+y^2+z^2=xy+yz+zx\)
Tính giá trị biểu thức A=(2015-\(\frac{2014x}{y}\))(\(\left(2014-\frac{2013y}{z}\right)\left(2013-\frac{2012z}{x}\right)\)
\(\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+z^2+xy\right)\)
Làm thế nào để ra như thế :D
Cho phương trình \(\left\{{}\begin{matrix}2x+y=5\\2y-x=a+5\end{matrix}\right.\)
Tìm a để hệ phương trình có nghiệm ( x,y) sao cho tích xy lớn nhất
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.