Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\). Chứng minh \(x^2y+y^2z+z^2x\le\frac{4}{27}\)
Áp dụng bđt cô si để tìm GTLN của các bt sau:
a) \(y=\left(x+3\right)\left(5-x\right)\) với -3≤x≤5
b) \(y=x\left(6-x\right)\) với 0≤x≤6
c) \(y=\left(x+3\right)\left(5-2x\right)\) với -3≤x≤\(\frac{5}{2}\)
d) y=(2x+5)(5-x) với \(\frac{-5}{2}\le x\le5\)
e) y=(6x+3)(5-2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
f) \(y=\frac{x}{x^2+2}\) với x>0
g) \(y=\frac{x^2}{\left(x^2+3\right)^3}\)
Cho 3 số x,y,z khác 0 thỏa mãn \(x^2+y^2+z^2=xy+yz+zx\)
Tính giá trị biểu thức A=(2015-\(\frac{2014x}{y}\))(\(\left(2014-\frac{2013y}{z}\right)\left(2013-\frac{2012z}{x}\right)\)
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\) Chứng minh \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
I Đại Số
bài 1 giải phương trình
a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\)
Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm.
Bài 3 giải phương trình
a)\(\left(x-1\right)^2=\left(2x+5\right)^2\)
b)\(\frac{\left(x-2\right)^3}{2}=x^2-4x+4\)
c)\(x^3+8=-2x\left(x+2\right)\)
d)\(x^2+8x-5=0\)
e)\(\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)
g)\(\left(4x-5\right)^2+7\left(4x-5\right)-8=0\)
h)\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)
j)\(2x\left(8x-1\right)\left(8x^2-x+2\right)-126=0\)
II HÌNH HỌC
Bài1: Cho tam giác ABC có MN//BC và \(\frac{AM}{AB}=\frac{1}{2};MN=3cm\) . Tính BC
Bài 2: Cho hình thang ABCD(AB//CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM=ON.
Bài 3: Trên các cạnh của AB, AC của ΔABC lần lượt lấy điểm M và N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\). Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh KM=KN
Bài 4: Cho hình vuông ABCD cạnh 6cm. Trên tia đối của AD lấy điểm I sao cho AI=2cm. IC cắt AB tại K. Tính độ dài IK và IC
B1: GPT
a,\(\left\{{}\begin{matrix}x^2+y^2-x+y=2\\xy+x-y=-1\end{matrix}\right.\) c,\(\left\{{}\begin{matrix}x^3=5x+y\\y^3=5y+x\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\) d,\(\left\{{}\begin{matrix}x^2+y^4=20\\x^4+y^2=20\end{matrix}\right.\)
giải hệ pt
\(\left\{{}\begin{matrix}\frac{8xy}{x^2+6xy+y^2}+\frac{17}{8}\left(\frac{y}{x}+\frac{x}{y}\right)=\frac{21}{4}\\\sqrt{x-16}+\sqrt{y-9}=7\end{matrix}\right.\)