Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Anh Ngọc

Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\). Chứng minh \(x^2y+y^2z+z^2x\le\frac{4}{27}\)

Nguyễn Việt Lâm
8 tháng 10 2020 lúc 21:22

Đặt vế trái là P

Ta có: \(P\le x^2y+y^2z+z^2x+xyz\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Leftrightarrow x^2+yz\le xy+xz\)

\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)

\(\Rightarrow P\le xy^2+z^2x+2xyz=x\left(y^2+z^2+2yz\right)=x\left(y+z\right)^2\)

\(\Rightarrow P\le\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{1}{2}\left(\frac{2x+y+z+y+z}{3}\right)^3=\frac{4}{27}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{3};0;\frac{2}{3}\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Anh Ngọc
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Lê Thị Ngọc Duyên
Xem chi tiết
Quân Vũ
Xem chi tiết
Nguyễn Trọng Vinh
Xem chi tiết
Hải Đăng
Xem chi tiết