Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow xy+yz+zx-2xyz=xy\left(1-z\right)+yz\left(1-x\right)+zx\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Mặt khác do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\Rightarrow1=x+y+z\ge3x\Rightarrow0\le x\le\frac{1}{3}\)
\(P=x\left(y+z\right)+yz\left(1-2x\right)=x\left(1-x\right)+yz\left(1-2x\right)\)
\(P\le x\left(1-x\right)+\frac{1}{4}\left(y+z\right)^2\left(1-2x\right)=x\left(1-x\right)+\frac{1}{4}\left(1-x\right)^2\left(1-2x\right)\)
\(P\le\frac{-2x^3+x^2+1}{4}=\frac{-2x^3+x^2+1}{4}-\frac{7}{27}+\frac{7}{27}\)
\(P\le-\frac{\left(1-3x\right)^2\left(6x+1\right)}{108}+\frac{7}{27}\le\frac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)