Giải hệ \(\left\{{}\begin{matrix}x+y+z=6\\xy+yz+zx=12\\\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}=3\end{matrix}\right.\)
giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2+xy=37\\y^2+z^2+yz=19\\z^2+x^2+xz=28\end{matrix}\right.\)
cho x, y, z thay đổi, nhận gt thuộc đoạn \(\left[0;4\right]\)
tìm gtln của A = \(4\left(x+y+z\right)-\left(xy+yz+zx\right)\)
Cho 3 số x,y,z khác 0 thỏa mãn \(x^2+y^2+z^2=xy+yz+zx\)
Tính giá trị biểu thức A=(2015-\(\frac{2014x}{y}\))(\(\left(2014-\frac{2013y}{z}\right)\left(2013-\frac{2012z}{x}\right)\)
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\) Chứng minh \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Giải hệ sau
\(\left\{{}\begin{matrix}\sqrt{\dfrac{x}{y}+\sqrt{\dfrac{y}{x}}}=\dfrac{7}{\sqrt{xy}+1}\\x\sqrt{xy}+y\sqrt{xy}=78\\x>0\\y>0\end{matrix}\right.\)
B1: GPT
a,\(\left\{{}\begin{matrix}x^2+y^2-x+y=2\\xy+x-y=-1\end{matrix}\right.\) c,\(\left\{{}\begin{matrix}x^3=5x+y\\y^3=5y+x\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\) d,\(\left\{{}\begin{matrix}x^2+y^4=20\\x^4+y^2=20\end{matrix}\right.\)
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.