\(3x+1-x+x^2-x^3+x^4-x^5+...=\frac{5}{4}\)
Áp dụng công thức tổng cấp số nhân lùi vô hạn với công bội \(q=-x\) và \(\left|q\right|< 1\) ta được:
\(\Leftrightarrow3x+\frac{1}{1+x}=\frac{5}{4}\)
\(\Leftrightarrow12x\left(1+x\right)+4=5\left(1+x\right)\)
\(\Leftrightarrow12x^2+7x-1=0\)
\(\Rightarrow x=\frac{-7\pm\sqrt{97}}{24}\)