Đầu tiên ta biến đổi đồng nhất biểu thức dưới dấu nguyên hàm nhờ các công thức biến đổi tích thành tổng. Ta có :
\(\left(\cos x\cos2x\right)\cos5x=\frac{1}{2}\left[\cos\left(-x\right)+\cos3x\right]\cos5x\)
\(=\frac{1}{2}\cos x\cos5x+\frac{1}{2}\cos3x\cos5x\)
\(=\frac{1}{4}\left[\cos\left(-4x\right)+\cos6x\right]+\frac{1}{4}\left[\cos\left(-2x\right)+\cos8x\right]\)
\(=\frac{1}{4}\cos2x+\frac{1}{4}\cos4x+\frac{1}{4}\cos6x+\frac{1}{4}\cos8x\)
Như vậy :
\(I=\frac{1}{4}\int\cos2xdx+\frac{1}{4}\int\cos4xdx+\frac{1}{4}\int\cos6xdx+\frac{1}{4}\int\cos8xdx\)
\(=\frac{1}{8}\sin2x+\frac{1}{16}\sin4x+\frac{1}{24}\sin6x+\frac{1}{32}\sin8x+C\)