Gọi số cần tìm là \(\overline{xy}\)
+) Do hiệu của 3 lần chữ số hàng chục với 2 lần chữ số hàng đơn vị là 11 nên ta có phương trình \(3x-2y=11\left(1\right)\)
+) Lại có, nếu đổi chữ số hàng chục và hàng đơn vị cho nhau, ta sẽ được 1 số mới nhỏ hơn số cũ 18 đơn vị, hay
\(\overline{xy}-\overline{yx}=18\Leftrightarrow\left(10x+y\right)-\left(10y+x\right)=18\Leftrightarrow9x-9y=18\Leftrightarrow x-y=2\left(2\right)\)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x-2y=11\\x-y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-2y=11\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=5\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi số cần tìm là \(\overline{ab}\) (0<a<10; 0<b<10) => 3a - 2b = 11 (1)
Khi đổi chỗ hai chữ số cho nhau được số mới là \(\overline{ba}\)
Do số mới nhỏ hơn số cũ 18 đơn vị => \(\overline{ab}\) - \(\overline{ba}\) = 18
⇔ 10a + b - 10b - a = 18
⇔ 9a - 9b = 18 (2)
Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}3a-2b=11\\9a-9b=18\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}9a-6b=33\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3b=-15\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\) (tm)
Vậy số cần tìm là 75
Gọi số phải tìm có dạng là ab(Điều kiện: 0<a<10; \(1\le b< 10\); \(a\in N\); \(b\in N\))
Vì hiệu của ba lần chữ số hàng chục và hai lần chữ số hàng đơn vị là 11 nên ta có phương trình: \(3a-2b=11\)(1)
Vì khi đổi chỗ chữ số hàng chục và chữ số hàng đơn vị cho nhau thì sẽ được số mới nhỏ hơn số cũ 18 đơn vị nên ta có phương trình:
\(10b+a+18=10a+b\)
\(\Leftrightarrow10b+a-10a-b=-18\)
\(\Leftrightarrow-9a+9b=-18\)
\(\Leftrightarrow-9\left(a-b\right)=-18\)
hay a-b=2(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=2\\3a-2b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=6\\3a-2b=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\a=-2+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\a=-2+5=3\end{matrix}\right.\)
Vậy: Số ban đầu là 35