\(C=\left(23-x\right)\left(3x+5\right)+13\)
\(=69x+115-3x^2-5x+13\)
\(=-3x^2+64x+128\)
\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)
\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)
Vậy \(Max_C=\dfrac{1408}{3}\)
Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)
d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)
\(=6x+10-9x^2-15x-7\)
\(=-9x^2-9x+3\)
\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)
\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)