ta có :C=3x-x\(^2\)
=-(x\(^2\)-3x)
C=3x-x\(^{^{ }2}\)
=-(x\(^2\)-3x)
=-[(x\(^{^{ }2}\)-2x\(\dfrac{3}{2}\)+\(\dfrac{9}{4}\))-\(\dfrac{9}{4}\)]
=-(x-\(\dfrac{3}{2}\))\(^2\)+\(\dfrac{9}{4}\)
vì -(x-\(\dfrac{3}{2}\))\(^{^{ }2}\)\(\le\)0 với mọi x
do đó max C=\(\dfrac{9}{4}\)
C=
= -x2+3x+\(\dfrac{9}{4}-\dfrac{9}{4}\)
= \(\left(-x^2+3x-\dfrac{9}{4}\right)+\dfrac{9}{4}\)
= - \(\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{9}{4}\)
= -\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\)
do \(-\left(x-\dfrac{3}{2}\right)^2\le0\forall X\)
=> -\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
=> C ≤ \(\dfrac{9}{4}\)
vậy GTLN C =\(\dfrac{9}{4}\)khi x-\(\dfrac{3}{2}=0\) => x=\(\dfrac{3}{2}\)