\(A=\dfrac{T}{M}\)
\(M=x^3-x^2-x-2=\left(x^3-8\right)-\left(x^2-4x+4\right)-5\left(x-2\right)\)
\(M=\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)^2-5\left(x-2\right)=\left(x-2\right)\left(x^2+2x+4-x+2-5\right)\)
\(M=\left(x-2\right)\left(x^2+x+1\right)\)
Điều kiện tồn tại A (x khác 2)
\(\Rightarrow A=\dfrac{1}{x^2+x+1}\)
\(\dfrac{1}{A}=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow A\le\dfrac{4}{3}\)
đạt được khi x=-1/2 thỏa mãn đk