Nguyễn NamAkai HarumaRibi Nkok Ngoklê thị hương giangTrần Ngọc BíchNguyễn Phương TrâmĐạt Trần TiếnPhạm Hoàng GiangNgân HảiChessEvanDikĐoàn Đức HiếuNguyễn Huy TúAce LegonaHung nguyen,...
Nguyễn NamAkai HarumaRibi Nkok Ngoklê thị hương giangTrần Ngọc BíchNguyễn Phương TrâmĐạt Trần TiếnPhạm Hoàng GiangNgân HảiChessEvanDikĐoàn Đức HiếuNguyễn Huy TúAce LegonaHung nguyen,...
cho 3 số dương x,y,z thảo mãn x+y+z = 2
Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{y+z}{xyz}\)
Cho x,y,z > 0.Tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
cho M= |x|/x + |y|/y + |z|/z + |xyz|/xyz
N = xy/|xy| + (x-y)/ |x-y| = ( x/|x| - y/|y| )
tính giá trị biểu thức trên, x,y,z khác 0, x khác y
tính giá trị các biểu thức sau(x,y,z≠≠\ne0 và x≠≠\ney): M=|x|x|x|x\dfrac{\left|x\right|}{x} |y|y|y|y\dfrac{\left|y\right|}{y} |z|z|z|z\dfrac{\left|z\right|}{z} |xyz|xyz|xyz|xyz\dfrac{\left|xyz\right|}{xyz} N=xy|xy|xy|xy|\dfrac{xy}{\left|xy\right|} x−y|x−y|x−y|x−y|\dfrac{x-y}{\left|x-y\right|} (x|x|x|x|\dfrac{x}{\left|x\right|}-y|y|y|y|\dfrac{y}{\left|y\right|})
Cho x,y,z là 3 số thực dương thỏa mãn x(x-z) + y(y-z) = 0
Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
Cho x+y+z=0. Tính giá trị của biểu thức B= x3+x2y+yz2-xyz+z3
Cho x,y,z là 3 số dương có tổng bằng 1. Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{x+y}{xyz}\)