\(M=x-x^2=x-x^2-\dfrac{1}{4}+\dfrac{1}{4}=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Ta lại có : \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
\(\Rightarrow MinM=\dfrac{1}{4}\)
Khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)