B = -x2 + 6x - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4 ≤ 4 ∀ x
Dấu "=" xảy ra <=> x = 3
Vậy MaxB = 4
Ta có: \(B=-x^2+6x-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x-3=0
hay x=3
Vậy: Giá trị lớn nhất của B là 4 khi x=3