Bài 1: Cho tg ABC cân tại A, vẽ phía ngoài các tg đều ABE, ACD.
a. cm: tg BCD= tg CBE
b. Kẻ đg cao AH của tg ABC. cm: EC, BD, AH cùng đi qua 1 điểm
c. cm: ED // BC
Bài 2: Cho tg cân ABC (AB=AC), trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE
a. cm: Tg ADE là tg cân
b. Gọi M là trung điểm BC. cm: AM là phân giác của góc DAE
c. Từ B và C, kẻ BH vg góc với AD và vg góc với AE. cm: BH = CK
d. cm: HK // DE
e. cm: 3 đg thẳng AM, BH và gặp nhau tại 1 điểm
Bài 3: Cho tg ABC, các trung tuyến BE và CD. Trên tia đối tia EB, lấy I sao cho EI = EB. Trên tia đối tia D, lấy K sao cho DC = DK
a. cm: A là trung điểm của KI
b. Cho BK và CI cắt nhau tại F. cm: BI, CK, FA đồng quy tại G
c. Cho FA và BC cắt nhau tại P. cm: GP = 1/4 GF