Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thái Bình

Tìm các nguyên hàm sau :

a) \(I_1=\int\log_2\left(1-3x\right)dx\)

b) \(I_2=\int\left(2x-3\right)\left(\ln x\right)^2dx\)

c)\(I_3=\int\left(4x^2+6x-7\right)\ln xdx\)

d) \(I_4=\int\left(x^2-2x+3\right)a^xdx\)    0<a, \(a\ne1\)

Mai Nguyên Khang
19 tháng 3 2016 lúc 22:00

a) Để ý đến công thức đổi cơ số logarit \(\log_2\left(1-3x\right)=\frac{1}{\ln2}\ln\left(1-3x\right)\)

Ta viết nguyên hàm đã cho dưới dạng \(I_1=\frac{1}{\ln2}\int\ln\left(1-3x\right)dx\)

Đặt \(u=\ln\left(1-3x\right)\) , \(dv=dx\)

Khi đó \(du=\frac{-3}{1-3x}dx\)\(v=x\)

Do đó :

\(I_1=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{x}{1-3x}dx\right]\)

    \(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{1}{3}\left(-1+\frac{1}{1-3x}\right)dx\right]\)

    \(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)-\int dx+\frac{dx}{1-3x}\right]\)

    \(=\frac{1}{\ln2}\left[\left(x-\frac{1}{3}\right)\ln\left(1-3x\right)-x\right]+C\)

b) Đặt \(u=\left(\ln x\right)^2\)  , \(dv=\left(2x-3\right)dx\)

Khi đó \(du=2\ln x\frac{dx}{x}\) , \(v=x^2-3x\)

Do đó 

\(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-2\int\left(x-3\right)\ln xdx\)

\(\int\left(x-3\right)\ln xdx=I_2\)

Ta tính \(I_2\) Ta tìm nguyên hàm bằng cách lấy nguyên hàm từng phàn một làn nữa và thu được.

\(I_2=\left(\frac{1}{2}x^2-3x\right)\ln x-\int\left(\frac{1}{2}x-3\right)dx=\frac{1}{2}\left(x^2-6x\right)\ln x-\frac{1}{4}x^2+3x\)

Từ đó  suy ra \(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-\left(x^2-6x\right)\ln x+\frac{1}{2}x^2-6x+C\)

Nguyen Thuy Hoa
20 tháng 3 2016 lúc 20:27

c) Đặt \(u=\ln x\) , \(dv=\left(4x^2+6x-7\right)dx\)

khi đó \(du=\frac{dx}{x}\) , \(v=\int\left(4x^2+6x-7\right)dx=x^4+3x^2-7x\)

Do đó

\(I_3=\left(x^4+3x^2-7x\right)\ln x-\int\frac{x^4+3x^2-7x}{x}dx\)

     \(=\left(x^4+3x^2-7x\right)\ln x-\left(\frac{x^4}{4}+\frac{3x^2}{2}-7x\right)+C\)

Võ Bình Minh
20 tháng 3 2016 lúc 20:37

d) Đặt \(u=x^2-2x+3,a^xdx=dv\). Khi đó \(du=\left(2x-2\right)dx,v=\int a^xdx=\frac{a^x}{\ln a}\)

Do vậy \(I_4=\frac{\left(x^2-2x+3\right)a^x}{\ln a}-\frac{1}{\ln a}\int\left(2x-2\right)a^xdx\)

\(\int\left(2x-2\right)a^xdx=I_4\)*

Ta tính \(I_4\)* bằng cách lấy nguyên hàm từng phần một lần nữa. Ta có :

\(I_4\)*\(=\int\left(2x-2\right)a^xdx=\frac{\left(2x-2\right)a^x}{\ln a}-\frac{1}{\ln a}\int2a^xdx\)

                                  \(=\frac{\left(2x-2\right)a^x}{\ln a}-\frac{2a^x}{\left(\ln a\right)^2}\)

Từ đó suy ra \(I_4=\left[\frac{x^2-2x+3}{\ln a}-\frac{2x-2}{\left(\ln a\right)^2}+\frac{2}{\left(\ln a\right)^3}\right]a^x+C\)


Các câu hỏi tương tự
Đặng Minh Quân
Xem chi tiết
Thiên An
Xem chi tiết
Nguyễn Bình Nguyên
Xem chi tiết
Lê Thanh Phương
Xem chi tiết
Đỗ Hạnh Quyên
Xem chi tiết
Tâm Cao
Xem chi tiết
Bắc Băng Dương
Xem chi tiết
Bắc Băng Dương
Xem chi tiết
Phạm Thảo Vân
Xem chi tiết