n² - 10n - 22 ≥ 0 => n(n - 10) ≥ 22 => n ≥ 12 (nhẩm thôi)
n = a(k)*10^k + a(k-1)*10^(k-1) + ... + a(1)*10 + a(0) ≥ a(k)*10^k
> a(k)*[a(k-1)*...*a(1)*a(0)] (do a(k-1), ..., a(0) đều < 10) = n² - 10n - 22
=> n² - 11n - 22 < 0 => n(n - 11) < 22 => n ≤ 12
Vậy n = 12. Thử ta thấy 1*2 = 2 = 12² - 10*12 - 22