a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(x^5+y^2=xy^2+1\)
Tìm tất cả các cặp số x,y ∈ Z+ thỏa mãn đẳng thức: \(\left(y-2\right)x^2+\left(y^2-6y+8\right)x=y^2-5y+62\)
Tìm tất cả bộ số nguyên dương (x;y;z) thỏa mãn \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương.
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
1, Tìm giá trị lớn nhất của biểu thức : \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
2, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn : \(2x^2+y^2+4x=4+2xy\)
3, Cho x,y,z >0 . Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Tìm tất cả bộ số nguyên dương(x,y,z) thỏa \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)là số hữu tỉ đồng thời (y+2)(4zx+6y-3) là số chính phương
Cho x, y, z là các số dương thỏa mãn: \(x^{2011}+y^{2011}+z^{2011}=3\). Tìm GTLN của biểu thức: \(M=x^2+y^2+z^2\)
Cho x, y, z là các số dương thỏa mãn: \(x^{2011}+y^{2011}+z^{2011}=3\). Tìm GTLN của biểu thức: \(M=x^2+y^2+z^2\)