Ta thấy nếu p, q cùng lẻ thì r chẵn. Mà r là số nguyên tố nên r = 2 (vô lí).
Do đó p = 2 hoặc q = 2 (Do p, q là các số nguyên tố).
Không mất tính tổng quát, giả sử p = 2.
Giả sử n lớn hơn 1.
Ta có \(r^2=2^n+q^n=\left(2+q\right).A\) với \(A=2^{n-1}+2^{n-2}q+...+q^{n-1}\).
Rõ ràng A lớn hơn 1. Do đó 2 + q = r. Dễ thấy q lẻ.
Suy ra \(\left(2+q\right)^2=2^n+q^n\).
Với n = 2 ta có 4q = 0, vô lí.
Với n > 2 ta có bất đẳng thức \(2^n+q^n\ge2^3+q^3\ge\dfrac{\left(2+q\right)^3}{4}>\left(2+q\right)^2\) (vô lí).
Do đó giả sử trên là sai.
Vậy n = 1.