= \(\sqrt{sin^2x+sin^2xcotx+cos^2x+cos^2xtanx}\)
= \(\sqrt{sin^2x+sin^2x.\dfrac{cosx}{sinx}+cos^2x+cos^2x.\dfrac{sinx}{cosx}}\)
\(=\sqrt{sin^2x+sinxcosx+cos^2x+sinxcosx}\)
= \(\sqrt{sin^2x+2sinxcosx+cos^2x}\)
= \(\sqrt{\left(sinx+cosx\right)^2}\)
= \(\sqrt{sin^2x+sin^2xcotx+cos^2x+cos^2xtanx}\)
= \(\sqrt{sin^2x+sin^2x.\dfrac{cosx}{sinx}+cos^2x+cos^2x.\dfrac{sinx}{cosx}}\)
\(=\sqrt{sin^2x+sinxcosx+cos^2x+sinxcosx}\)
= \(\sqrt{sin^2x+2sinxcosx+cos^2x}\)
= \(\sqrt{\left(sinx+cosx\right)^2}\)
Rút gọn biểu thức:
C= \(cos^4x+cos^2x.sin^2x+sin^2x\)
D= \(\sqrt{sin^2x\left(1+cotx\right)+cos^2x\left(1+tanx\right)}\)
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Cm các đẳng thức sau không phụ thuộc vào giá trị x,y
\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2\)
\(cos^2x.cot^2x+3cos^2x-cot^2x+2sin^2x\)
\(sin^8x+cos^8x+6sin^4x.cos^4x+4sin^2x.cos^2x\left(sin^4x+cos^4x\right)+1\)
Mọi người giải chi tiết giúp mình, mình cảm ơn
\(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
=\(\sqrt{\left(1-cos^2x\right)^2+4\cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4\sin^2x}\)
=\(\sqrt{\cos^4x-2\cos^2x+1+4\cos^2x}+\sqrt{\sin^4x-2\sin^2x+1+4\sin^2x}\)
=\(\sqrt{\cos^4x+2\cos^2x+1}+\sqrt{\sin^4x+2\sin^2x+1}\)
=\(\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
=\(cos^2x+1+sin^2x+1=3\)
Trong các hệ thức sau , hệ thức nào sai ?Nếu sai hãy sửa lại cho đúng và chứng minh các hệ thức đúng còn lại ?
\(A.\frac{sin^2\alpha+1}{2\left(1-sin^2\alpha\right)}+\frac{1+cos^2\alpha}{2\left(1-cos^2\alpha\right)}+1=\left(tan\alpha+cot\alpha\right)^2\)
\(B.\frac{1-4sin^2x.cos^2x}{4sin^2x.cos^2x}=\frac{1+tan^4x-2tan^2x}{4tan^2x}\)
\(C.\frac{sinx+tanx}{tanx}=1+sinx+cotx\)
\(D.tanx+\frac{cosx}{1+sinx}=\frac{1}{cosx}\)
chứng minh rằng
1) \(tanx=\frac{1-cos2x}{sin2x}\)
2)\(\frac{sin\left(60^0-x\right).cos\left(30^{0^{ }}-x\right)+cos\left(60^{0^{ }}-x\right).sin\left(30^{0^{ }}-x\right)}{sin4x}=\frac{1}{2sin2x}\)
3) \(4cos\left(60^0+a\right).cos\left(60^0-a\right)+2sin^2a=cos2a\)
\(\frac{\sin2x\left(2\cos x-1\right)+2\left(\sin x-1\right)}{\sqrt{2\sin x-1}}=\sqrt{2\sin x-1}\)