Rút gọn biểu thức:
h) \(\sqrt{\dfrac{3+\sqrt{5}}{\sqrt{3-\sqrt{5}}}}+\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{3+\sqrt{5}}}}\)
Rút gọn biểu thức
a) \(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
b)\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
c)\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
d) \(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
e)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y},x,y>0\)
f)\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g)\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}v\text{ới}a>0,a\ne3\)
Rút gọn
a.\(\dfrac{\sqrt{7}-5}{2}-\dfrac{6}{\sqrt{7}-2}+\dfrac{1}{3+\sqrt{7}}+\dfrac{3}{5+2\sqrt{7}}\)
b.\(\left(\sqrt{10}+\sqrt{2}\right).\left(6-2\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)
Tính:
\(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
1.Thu gọn
A=\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2020}+\sqrt{2021}}\)
Bài 1 :
a, \(\dfrac{1}{2}\sqrt{12}+\sqrt{27}-\sqrt{75}\)
b, \(\sqrt{7-4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c, 6\(\sqrt{27}-2\sqrt{75}-\dfrac{1}{2}\sqrt{300}\)
d, \(\dfrac{7}{\sqrt{10}-\sqrt{3}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}-\dfrac{6}{\sqrt{3}}\)
e, \(\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.(3\sqrt{2}+\sqrt{14)}\)
f, \(\sqrt{11-4\sqrt{ }7}+\dfrac{2\sqrt{7}-2}{\sqrt{7}-1}\)
g, \((\sqrt{125}-3\sqrt{3})\dfrac{\sqrt{5}-\sqrt{3}}{8+\sqrt{15}}\)
h, \(\sqrt{100}-\sqrt{64}\)
i, \(\sqrt{(1-\sqrt{3})^2}-\sqrt{3}\)
Bạn nào biết làm bài này thì giúp mình với ạ ! sáng mai mình cần gấp !
Rút gọn
A=\(\sqrt{13+4\sqrt{10}}\)
B= \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
C= \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(D=\sqrt[]{\dfrac{3\sqrt{ }3-4}{2\sqrt{3+1}}+\sqrt[]{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}}\)