Ta có: \(B=\sqrt{13+3\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+3\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}\cdot1+1}}}\)
\(=\sqrt{13+3\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+3\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+3\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+3\cdot\left(\sqrt{2}+1\right)}\)
\(=\sqrt{13+3\sqrt{2}+3}\)
\(=\sqrt{16+3\sqrt{2}}\)
Ta có: \(C=\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{12+2\cdot\sqrt{12}\cdot1+1}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{12}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+2\cdot\sqrt{3}\cdot1+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\cdot\sqrt{3-\left(\sqrt{3}+1\right)^2}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\cdot\sqrt{3-\sqrt{3}-1}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{3}-1}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{3}-1}=\frac{\sqrt{3}-1}{\sqrt{3}-1}=1\)
Ta có: \(D=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{18-\sqrt{128}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{16-2\cdot4\cdot\sqrt{2}+2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-2}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{1}}\)
\(=\sqrt{6+2\sqrt{2}}\)