Ta có : \(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10\left(x+3\right)}{35}-\frac{7\left(4x-3\right)}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10\left(x+3\right)-7\left(4x-3\right)}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{51-18x}{35}\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\\frac{51-18x}{35}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x-2=0\\51-18x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\18x=51\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{51}{18}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{2}{3},\frac{51}{18}\right\}\)
- Vậy tích 2 nghiệm x1, x2 của phương trình là : \(\frac{2}{3}.\frac{51}{18}=\frac{17}{9}\)