Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho đa thức: \(f\left(x\right)=x^5+x^2+1\) có 5 nghiệm là \(x_1,x_2,x_3,x_4,x_5\). Tính giá trị của biểu thức: \(A=q\left(x_1\right).q\left(x_2\right).q\left(x_3\right).q\left(x_4\right).q\left(x_5\right)\) với \(g\left(x\right)=x^2-4\)

Nguyễn Việt Lâm
12 tháng 3 2021 lúc 7:42

Chắc là \(q\left(x\right)=x^2-4????\)

\(f\left(2\right)=2^5+2^2+1=37\) ; \(f\left(-2\right)=-27\)

Do \(f\left(x\right)\) có 5 nghiệm nên f(x) có dạng:

\(f\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

\(\Rightarrow f\left(2\right)=\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)=37\)

\(f\left(-2\right)=\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\left(-2-x_5\right)=-27\)

\(\Rightarrow\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)=27\)

 

\(A=\left(x_1^2-4\right)\left(x^2_2-4\right)\left(x_3^2-4\right)\left(x_4^2-4\right)\left(x^2_5-4\right)\)

\(A=-\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)\)

\(A=-37.27=-999\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Achana
Xem chi tiết
Ngô Công Đức
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Qynh Nqa
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Yêu lớp 6B nhiều không c...
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết