Ta có: \(x^8+98x^4+1\)
\(=x^8+2x^4+1+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left[4x\left(x^2-1\right)\right]^2\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4-4x^3+8x^2+4x+1\right)\left(x^4+4x^3+8x^2-4x+1\right)\)