b) Ta có: \(A=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
\(=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{5-2\cdot\sqrt{5}\cdot1+1}-\sqrt{5+2\cdot\sqrt{5}\cdot1+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{5}-1\right|-\left|\sqrt{5}+1\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1-\left(\sqrt{5}+1\right)}{\sqrt{2}}\)(Vì \(\sqrt{5}>1>0\))
\(=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}\)
\(=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)