\(P=\dfrac{3\left(x-1\right)^2}{-\left(x-1\right)\left(x+1\right)}=\dfrac{-3\left(x-1\right)}{x+1}\)
\(P=\dfrac{3\left(x-1\right)^2}{-\left(x-1\right)\left(x+1\right)}=\dfrac{-3\left(x-1\right)}{x+1}\)
Rút gọn:
a) x4 - 4x2 + 3 / x4 + 6x2 - 7
b) x4 + x3 - x - 1 / x4 + x3 + 2x2 + x + 1
c) x3 + 3x2 - 4 / x3 - 3x + 2
d) x3 + x2 - 4x - 4 / x3 + 8x2 + 17x + 10
e) x4 + 6x3 + 9x2 - 1 / x4 + 6x3 + 7x2 - 6x + 1
Rút gọn phân thức
a,\(\dfrac{\left(x^2-y\right).\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right).\left(y+1\right)+x^2y^2+1}\)
b,\(\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x+y\right)}{x^2y-x^2z+y^2z-y^3}\)
c, \(\dfrac{x^3+3x^2-4}{x^3-3x+2}\)
d , \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
bài 1 : Rút gọn
8) x+3/x^2-3x
9) x-2/x-5÷(x-2)^2/x^2-25
10) 1÷(1-1/a)
11) (a+6/3a+9-1/a+3)÷a+2/27a
12) 6x+6/3x^2+3x
13) 3/x+3 -x-6/x^2+3x
14) (x/x+2+2/x-2+4x/x^2-4)×x^2-2x+4/x+2
a, 3x(4x-3)-(2x-1)(6x+5) b, 3x(x-1)²-2x(x+3)(x-3)+4x(x-4)
c, (x-1)³-(x-2)(x²-2x+4)+3(x+4)(x-4)
\(\dfrac{3x\left(x-y\right)^2\left(x-1\right)}{6x\left(x-1\right)\left(x-y\right)^3}\)
\(\dfrac{x^2+2x+1}{x+1}\)
\(\dfrac{a^3-4a^2+4a}{a^2-4}\)
\(\dfrac{7x^2+14x+7}{3x^2+3x}\)
a.3x(1-x)/2(x-1) b.6x²y²/8xy⁵ c.3(x-y)(x-z)²/x-y)(x-z)
tìm điều kiện xác định rồi rút gọn
\(a,\dfrac{x^3-3x^2-x+3}{x^2-3x}\)
\(b,\dfrac{6x^2-3x}{4x^2-1}\)
\(c,\dfrac{x^3-4x}{10-5x}\)
\(d,\dfrac{4xy-2y+2x-1}{2y+1}\)
Rút gọn phân thức sau:
a)\(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b)\(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x+6}{4-x^2}\)
c)\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
d)\(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
1.Rút gọn phân thức
a)2x-6/x^2-x-6
b) 6x^2-x-2/4x^2-1
c) x^3-x^2+3x-3/x^3+2x^2+3x+6
d) a^2-b^2+c^2+2ac/a^2+b^2-c^2+2ac
e)(n+2)! + (n+1)!/(n+3)! -(n+2)!
g) n!/n!+(n+1)!
Ai làm giúp tớ đi chiều phải nộp rồi