Không gian mẫu: \(C_{10}^3\)
a. Xác suất: \(\dfrac{C_4^2.C_6^1}{C_{10}^3}=...\)
b. \(P=\dfrac{C_4^2C_6^1+C_4^3}{C_{10}^3}=...\)
c. \(P=\dfrac{C_6^3}{C_{10}^3}=...\)
Không gian mẫu: \(C_{10}^3\)
a. Xác suất: \(\dfrac{C_4^2.C_6^1}{C_{10}^3}=...\)
b. \(P=\dfrac{C_4^2C_6^1+C_4^3}{C_{10}^3}=...\)
c. \(P=\dfrac{C_6^3}{C_{10}^3}=...\)
một hộp chứa 8 quả cầu trắng và 6 quả cầu đen cùng kích thước. Rút ngẫu nhiên cùng một lúc 4 quả cầu. Tính xác suất để trong 4 quả cầu rút được ít nhất 2 quả cầu đen
6. Một hộp đựng 7 quả cầu trắng và 8 quả cầu đen cùng kích cỡ. Lấy ngẫu nhiên ra 4 quả cầu. Tìm xác suất để:
a/ trong 4 quả lấy ra có 3 quả trắng?
b/ có 4 quả cùng màu?
c/ có ít nhất 1 quả màu đen?
Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ngẫu nhiên đồng thời 4 quả. Tính xác suất sao cho :
a) Bốn quả lấy ra cùng mầu
b) Có ít nhất một quả mầu trắng
Từ mỗi hộp có 7 quả cầu trắng, 5 quả cầu đen lấy ngẫu nhiên đồng thời 4 quả . Tính sác xuất sao cho :
a/ bốn quả lấy ra cùng màu
b/ có ít nhất 1 quả cầu đen
1. Có ba hộp đựng cầu. Hộp 1 đựng 10 cầu trắng và 5 cầu đỏ, hộp 2 đựng 7 cầu trắng và 8 cầu đỏ, hộp 3 đựng 5 cầu trắng. Lấy ngẫu nhiên từ hộp 1 ra 2 quả cầu và từ hộp 2 ra 1 quả cầu rồi bỏ vào hộp 3. Tính xác suất để hộp thứ 3 toàn cầu trắng.
Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đỏ và 2 quả xanh, hộp thứ hai chứa 4 quả đỏ và 6 quả xanh. Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất sao cho :
a) Cả hai quả đều đỏ
b) Hai quả cùng màu
c) Hai quả khác nhau
một hộp chứa 35 quả cầu gồm 20 quả cầu đỏ được đánh số từ 1 đến 20 và 15 quả cầu xanh đc đánh số từ 1 đến 15. Lấy ngẫu nhiên từ hộp đó 1 quả cầu. Tính xác suất để lấy đc 1 quả cầu màu đỏ hoặc ghi số lẻ
Một hộp đựng 6 viên bi trắng và 8 viên bi vàng. Lấy ngẫu nhiên cùng lúc 5 viên bi từ hộp. Tính xác suất để 5 viên bi được lấy có đủ cả 2 màu
Có 8 quả cầu xanh, 4 quả cầu vàng, 6 quả cầu đỏ (các quả cầu đôi một khác nhau). Có bao nhiêu cách lấy ra 6 quả cầu sao cho:
A. Phải có đúng 2 quả cầu đỏ
B. Phải có ít nhất 2 quả cầu đỏ
C. Phải có đủ 3 màu