Bài 6: Ôn tập chương Tổ hợp - Xác suất

Bài 1 (SGK trang 76)

Hướng dẫn giải

Quy tắc: Nếu hành động H gồm nhiều trường hợp thì số cách thực hiện hành động H bằng tổng số cách thực hiện từng trường hợp ấy.

Ví dụ:

Trên một bàn học có 4 cây bút chì và 3 cây bút mực. Có mấy cách chọn ra một cây bút?

+ Trường hợp chọn bút chì: có 4 cách chọn

+ Trường hợp chọn bút mực: có 3 cách chọn

Vậy theo quy tắc cộng có: 4 + 3 = 7 cách chọn.

(Trả lời bởi qwerty)
Thảo luận (1)

Bài 2 (SGK trang 76)

Hướng dẫn giải

- Quy tắc: Giả sử ta phải thực hiện hai hành động liên tiếp. Nếu hành động thứ nhất có m kết quả và ứng với mỗi kết quả đó, hành động thứ hai có n kết quả, thì có m.n kết quả của hai hành động liên tiếp ấy.

- Ví dụ:

Một lớp có 3 tổ, mỗi tổ có 6 nam và 4 nữ. Cần chọn từ mỗi tổ một người để thành lập đội thanh niên tình nguyện mùa hè xanh. Hỏi có bao nhiêu cách để lập được một đội?

Giải:

Để lập đội, từ mỗi đội ta chọn một người:

+ Có 10 cách chọn 1 người từ tổ thứ nhất

+ Có 10 cách chọn 1 người từ tổ thứ hai

+ Có 10 cách chọn 1 người từ tổ thứ ba

Từ đó, theo quy tắc nhân ta có:

10. 10. 10 = 1000 (cách chọn)

(Trả lời bởi qwerty)
Thảo luận (2)

Bài 3 (SGK trang 76)

Hướng dẫn giải

Cho tập hợp A có n phần tử (n ≥ 1)

Chỉnh hợp chập k của n phần tử

Sắp xếp thứ tự các phần tử

_ Sử dụng k phần tử trong số n phần tử của A (k ≤ n) và sắp xếp thứ tự k phần tử này (mỗi cách sắp xếp là một chỉnh hợp chập k của phần tử)

_ Số chỉnh hợp chập k của n phần tử là:\(A^k_n=\dfrac{n!}{\left(n-k\right)!}\)

 

Tổ hợp chập k của n phần tử

Không chú ý đến thứ tự của các phần tử

_ Sử dụng k phần tử trong n phần tử A (k ≤ n) và không để ý đến thứ tự của các phần tử này.

_Số tổ hợp chập k của n phần tử là:

\(C^k_n=\dfrac{n!}{k!\left(n-k\right)!}\)

 

(Trả lời bởi qwerty)
Thảo luận (1)

Bài 4 (SGK trang 76)

Hướng dẫn giải

Tập hợp A = {0, 1, 2, 3, 4, 5, 6}

a) Gọi số có 4 chữ số tạo thành là \(\overline{abcd}\)

Ta có: \(\overline{abcd}\) chẵn nên:

Số \(\overline{abcd}\left\{{}\begin{matrix}a,b,c,d\in A\\a\ne0\\d\in\left\{0;2;4;6\right\}\end{matrix}\right.\)

_ Có 4 cách để chọn d

_ a ≠ 0 ⇒ có 6 cách chọn a

_ có 7 cách chọn b và 7 cách chọn c

Vậy : 4.6.7.7 = 1176 số chẵn \(\overline{abcd}\) trong đó, các chữ số có thể giống nhau

b) Gọi \(\overline{abcd}\) là số cần tìm

Trường hợp 1: \(\overline{abc0}\left(d=0\right)\)

Vì a, b, c đôi một khác nhau và khác d nên có A63 số \(\overline{abc0}\)

Vậy có A63 số \(\overline{abc0}\)

Trường hợp 2: \(\overline{abcd}\) (với d ≠ 0)

_ d ∈ {2, 4, 6} ⇒ có 3 cách chọn d

_ a ≠ 0, a ≠ d nên có 5 cách chọn a

_ b ≠ a, b ≠ d nên có 5 cách chọn b

_ c ≠ a, b, d nên có 4 cách chọn c

⇒ Có 3. 5. 5. 4 = 300 số \(\overline{abcd}\) loại 2.

Vậy có: A63 + 300 = 420 số \(\overline{abcd}\) thỏa mãn yêu cầu của đề bài.

(Trả lời bởi qwerty)
Thảo luận (1)

Bài 5 (SGK trang 76)

Hướng dẫn giải

Số cách xếp 3 nam và 3 nữ vào 6 ghế là 6! Cách.

Suy ra: \(n\left(\Omega\right)=6!=720\)

a) Ta gọi A là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1 2 3 4 5 6

Trường hợp 1:

+ Nam ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nữ ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nam ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Suy ra:

N(A) = 3!.3! + 3!.3! = 36 + 36 = 72 cách xếp.

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{72}{720}=\dfrac{1}{10}=0,1\)

b) Gọi biến cố B: “Ba bạn nam ngồi cạnh nhau”

Xem 3 bạn nam như một phần tử N và N cùng 3 bạn nữ được xem như ngồi vào 4 ghế được đánh số như sau:

1 2 3 4

_ Số cách xếp N và 3 nữ vào 4 ghế là 4!

_ Mỗi cách hoán vị 3 nam cho nhau trong cùng một vị trí ta có thêm 3! cách xếp khác nhau.

Suy ra n(B) = 4!.3!=144

Vậy: \(P\left(B\right)=\dfrac{n\left(B\right)}{n\left(\Omega\right)}=\dfrac{144}{720}=\dfrac{1}{5}=0,2\)

(Trả lời bởi qwerty)
Thảo luận (1)

Bài 5 (SGK trang 76)

Hướng dẫn giải

Số cách xếp 3 nam và 3 nữ vào 6 ghế là 6! Cách.

Suy ra: n(Ω)=6!=720n(Ω)=6!=720

a) Ta gọi A là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1

2

3

4

5

6

Trường hợp 1:

+ Nam ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nữ ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nam ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Suy ra:

N(A) = 3!.3! + 3!.3! = 36 + 36 = 72 cách xếp.

Vậy P(A)=n(A)n(Ω)=72720=110=0,1P(A)=n(A)n(Ω)=72720=110=0,1

b) Gọi biến cố B: “Ba bạn nam ngồi cạnh nhau”

Xem 3 bạn nam như một phần tử N và N cùng 3 bạn nữ được xem như ngồi vào 4 ghế được đánh số như sau:

1

2

3

4

_ Số cách xếp N và 3 nữ vào 4 ghế là 4!

_ Mỗi cách hoán vị 3 nam cho nhau trong cùng một vị trí ta có thêm 3! cách xếp khác nhau.

Suy ra n(B) = 4!.3!=144

Vậy : P(B)=n(B)n(Ω)=144720=15=0,2



(Trả lời bởi Minh Hải)
Thảo luận (1)

Bài 6 (SGK trang 76)

Bài 7 (SGK trang 77)

Bài 8 (SGK trang 77)

Bài 9 (SGK trang 77)

Hướng dẫn giải

Không gian mẫu là:

\(\Omega=\left\{\left(i;j\right)\le i;j\le6\right\}\Rightarrow n\left(\Omega\right)=6^2=36\)

a) A là biến cố “Hai con xúc sắc đều xuất hiện mặt chẵn”

Suy ra: A = { (2, 2); (4, 4); ( 6, 6); (2, 4); (4, 2); (2, 6); (6, 2); (4, 6); (6, 4)}

Suy ra: n(A) = 9

Vậy \(P\left(A\right)=\dfrac{9}{36}=\dfrac{1}{4}\)

b) Gọi B là biến cố: “Tích các số chấm trên hai con xúc sắc là số lẻ”.

⇒ B = {(1, 1); (1, 3); (1, 5); (3, 1); (3, 3); (3, 5); (5, 1); (5, 3); (5, 5)}

⇒ n(B) = 9

Vậy \(P\left(B\right)=\dfrac{9}{36}=\dfrac{1}{4}\)

(Trả lời bởi qwerty)
Thảo luận (1)