Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuyet Anh Lai

mng giúp mik bài này được ko? mik đang cần gấp . cảm ơn bạn nhiều loading...

Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 10:07

a: =>x>=0 và x^2+x=x^2

=>x=0

a: =>x>=1 và 1-x^2=x^2-2x+1

=>-2x^2+2x=0 và x>=1

=>x=1

a: =>x>=1 và 1-2x^2=x^2-2x+1

=>-3x^2+2x=0 và x>=1

=>\(x\in\varnothing\)

a: ĐKXĐ: x<=2 và x^2-2x=x^2-4x+4

=>x=2

a: =>căn x^2-4=x-2

=>x>=2 và x^2-4=x^2-4x+4

=>x>=2 và 4x=8

=>x=2

b: =>x>=0 và x^2-4x+1=x^2

=>-4x+1=0 và x>=0

=>x=1/4

b: =>x>=-1 và x^2+x+1=x^2+2x+1

=>x=0

c: =>x>=1 và 4x^2-8x+1=x^2-2x+1

=>x>=1 và 3x^2-6x=0

=>x=2

b: =>x>=-1 và 5x^2-2x+2=x^2+2x+1

=>x>=-1 và 4x^2-4x+1=0

=>x=1/2

b: =>căn 4x^2-x+1=2x+3

=>x>=-3/2 và 4x^2-x+1=(2x+3)^2=4x^2+12x+9

=>x>=-3/2 và -13x=8

=>x=-8/13

HT.Phong (9A5)
2 tháng 7 2023 lúc 11:22

1)  \(\sqrt{x^2+x}=x\) (Thỏa mẵn với mọi x)

\(\Leftrightarrow x^2+x=x^2\)

\(\Leftrightarrow x^2+x-x^2=0\)

\(\Leftrightarrow x=0\)

Vậy \(x=0\)

2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\) )

\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-x^2=x^2-2x+1\)

\(\Leftrightarrow-x^2-x^2+2x=1-1\)

\(\Leftrightarrow-2x^2+2x=0\)

\(\Leftrightarrow-2x\left(x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;1\right\}\)

\(\sqrt{1-2x^2}=x-1\) (ĐK: \(x\le\sqrt{\dfrac{1}{2}}\))

\(\Leftrightarrow1-2x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-2x^2=x^2-2x+1\)

\(\Leftrightarrow-2x^2-x^2+2x=1-1\)

\(\Leftrightarrow-3x^2+2x=0\)

\(\Leftrightarrow-x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;\dfrac{2}{3}\right\}\)

\(\sqrt{x^2-2x}=2-x\) (ĐK: \(\left\{{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\) )

\(\Leftrightarrow x^2-2x=\left(2-x\right)^2\)

\(\Leftrightarrow x^2-2x=4-4x+x^2\)

\(\Leftrightarrow x^2-x^2-2x+4x=4\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(x=2\)

\(\sqrt{x^2-4}-x+2=0\) (ĐK: \(\left\{{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\))

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow x^2-4=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2+4x=4+4\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(x=2\)


Các câu hỏi tương tự
Tuyet Anh Lai
Xem chi tiết
Tuyet Anh Lai
Xem chi tiết
Tuyet Anh Lai
Xem chi tiết
Tuyet Anh Lai
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Lê Cẩm Tú
Xem chi tiết
Khang Đặng Sỹ
Xem chi tiết