\(\sqrt{x^2-4}-x+2=0\\ \Leftrightarrow\sqrt{x^2-4}=x-2\\ \Leftrightarrow\left(\sqrt{x^2-4}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)4=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)