Cho tứ giác ABCD và M , N lần lượt là trung điểm của đoạn thẳng AB , CD . Chứng minh rằng :
a / \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{MN}\)
b / \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
c / Gọi I là trung điểm của BC . Chứng minh rằng : \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
HELP ME !!!!!!!!!!!
CHO tam giác ABC có I là trung điểm của trung tuyến AM và D là điểm thỏa hệ thức \(3\overrightarrow{AD}=\overrightarrow{AC}\)
A/ Biểu diễn vecto BD,BI theo AB,AC
b/ CHỨNG MINH BA ĐIỂM B,I, D THẲNG HÀNG
Cho tứ giác ABCD. Hai điểm M, N thay đổi trên các cạnh AB, CD sao cho:
\(\dfrac{AM}{AB}=\dfrac{CN}{CD}\)
tìm tập hợp các trung điểm I của MN
Cho tam giác ABC.
a. Điểm M di động. Dựng \(\overrightarrow{MN}=2\overrightarrow{MA}+3\overrightarrow{MB}-\overrightarrow{MC}\). Chứng minh MN luôn đi qua một điểm cố định.
b. Cho P là trung điểm CN. Chứng minh MP luôn đi qua một điểm cố định khi M thay đổi.
c. Kéo dài AB một đoạn sao cho BE = AB, F là trung điểm AC. Vẽ hình bình hành AEFG, AG cắt BC tại K. Tính tỉ số \(\dfrac{KB}{KC}\).
d. Cho J thuộc BC sao cho \(BJ=\dfrac{5}{7}BC\). I thuộc AJ sao cho \(AI=\dfrac{2}{3}AJ\). Đường thẳng qua I cắt AB, AC tại R,Q. Tính \(\dfrac{AR}{AB}+\dfrac{AQ}{AC}\).
Cho tam giác ABC với I. J. K lần lượt đc xác định bởi IB = 2IC. JC = -1/2 JA. KA = - KB.
a) Tính IJ. IK theo AB và AC
b) Chứng minh ba điểm I.J.K thẳng hàng
Toàn bộ đều là véc tơ...e ko bix viết ra sao hết nên để ko luôn...
Hình thang ABCD (AB song song CD và AB <CD) có A(0,2) I là giao điểm của hai đường chéo và I thuộc x+y-4=0 và góc AID=45 độ tìm tọa độ các điểm còn lại
cho tam giác ABC có I là trung điểm của BC và G là trọng tâm . Gọi D và E là hai điểm xác định bởi vecto AD=2 vecto AB và vecto AE = 2/5 vecto AC . Hãy phân tích các vecto DE , DG theo hai vecto AB , AC . Chứng minh ba điểm D,G,E, thẳng hàng
Cho tứ giác ABCD. Gọi M, N theo thứ tự thuộc cách cạnh AD, BC sao cho \(\frac{AM}{AD}=\frac{CN}{CB}\)
CMR : khi M, N thay đổi thì trung điểm I của MN luôn nằm trên một đường thẳng cố định
Cho hình thang ABCD (AB//CD) CD=2AB M là trung điểm AB
Đặt vt BM =vt a;vt BC =vt b.Trên đoạn MC lấy I sao cho MI=k .MC (k thuộc R) phân tích vt BI,BD theo vt a và b .tìm k để B,I,D thẳng hàng