Bài 5: Giải bài toán bằng cách lập hệ phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Là Em

Hai công nhân cùng làm 1 công việc thì 6 ngày xong . Nhưng nếu người thứ nhất làm 4 ngày rồi nghỉ người thứ hai làm tiếp 6 ngày thì mới hoàn thành được 4/5 công việc . Hỏi nếu làm 1 mình mỗi người làm xong công việc đó trong bao lâu?

Mọi người giúp mình với ạ !!! Mình đang cần gấp!!!

Phạm Lan Hương
14 tháng 2 2020 lúc 21:52

gọi thời gian người thứ 1 ; người thứ 2 làm xong công việc một mình lần lượt là x:y(ngày)

đk: x;y>0

năng suất của người thứ 1 là :\(\frac{1}{x}\)(côngviệc/ngày)

năng suất của người thứ 2 là \(\frac{1}{y}\)(công việc/ ngày)

năng suất chung của 2 người là \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\) (công việc/ngày)

thời gian 2 người làm chung hoàn thành công việc là : \(\frac{xy}{x+y}\left(ngày\right)\)

vì theo bài ra ta có thời gian cả 2 người làm chung xong công việc là6ngày nên ta có phương trình: \(\frac{xy}{x+y}=6\Leftrightarrow6x+6y=xy\left(1\right)\)

khối lượng công việc người thứ 1 làm được trong 4ngày là: \(\frac{4}{x}\)(công việc)

khối lượng công việc người thứ 2 làm được trong 6ngày là \(\frac{6}{y}\)(công việc)

vì nếu người thứ 1 làm việc trong 4ngày ; người thứ 2 làm trong 6ngày thì hoàn thành 4/5 công việc nên ta có phương trình : \(\frac{4}{x}+\frac{6}{y}=\frac{4}{5}\)

\(\Leftrightarrow20y+30x=4xy\left(2\right)\)

từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}6x+6y=xy\\20x+30y=4xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)(tm)

vậy thời gian người thứ 1 ; người thứ 2 làm xong công việc một mình lần lượt là 10ngày;15ngày

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
vi lê
Xem chi tiết
Nguyễn Trần Bia
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Cute Trang
Xem chi tiết
Mini Gaming
Xem chi tiết
X-Event Cross
Xem chi tiết
MiMi VN
Xem chi tiết
vi lê
Xem chi tiết
Song Ngư 🐬
Xem chi tiết