\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Do đó: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\forall a,c,b\)
Dấu '=' xảy ra khi a=b=c
Vậy: Đây là tam giác đều
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Do đó: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\forall a,c,b\)
Dấu '=' xảy ra khi a=b=c
Vậy: Đây là tam giác đều
Tồn tại hay không một tam giác có độ dài 3 cạnh là a;b;c sao cho a=2b;b=2c
Bài 2 : Cho tam giác ABC vuông ở A , có góc B = 60 độ , trên cạnh BC lấy điểm E sao cho BE = BA . Tia phân giác của góc B cắt AC ở D .
a. Tính góc C
b. So sánh độ dài DA và DE
c. Trên tia BA lấy điểm F sao cho A là trung điểm của BF . Chứng minh ba điểm E , D , F thẳng hàng
Cho tam giác ABC vuông góc tại A. Tia phân giác của góc B cắt cạnh Ac tại D.
a)Cho biết góc ACB= 40 độ. Tính số đo góc ABD
b)Trên cạnh BC lấy điểm E sao cho BE=BA
CM: Tam giác BAD = tam giác BEC và BC vuông góc với DE
c) Gọi F là giao điểm của Ba và ED
CMR: tam giác ABC=tam giác EBF
d)Vẽ CK vuông với BD tại K. CM 3 điểm K; F;C thẳng hàng
cho góc xOy khác góc bẹt . Trên cạnh Õ lấy điểm A,trên cạnh Oy lấy điểm B sao cho OA=OB.Vẽ hai cung tròn tâm A và B cùng bán kính cắt nhau tại C nằm trong gó xOy
a) Chứng minh tam giác AOC=tam giác BOC b)Chứng tỏ OC là tia phân giác của góc xOy
c)Gọi M là trung điểm AB.Chứng minh 3 điểm O,M,C thẳng hàng
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE
a) So sánh ABD và ACE
b) Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì? Vì sao?
cho tam giác abc có góc a=90 độ,trên cạnh bc lấy điểm e sao cho be=ba.tia phân giác của góc bcắt ac ở d
a,so sánh độ dài davà de
b, tính số đo góc bed
Cho tam giác ABC vuông tại A có góc bằng 60 độ, trên cạnh BC lấy điểm D sao cho CAD bằng 30 độ.
a) C/m các tam giác ACD và tam giác ABD là tam giác cân
b) C/m D là trung điểm của BC
c) vẽ DI thẳng góc AC tại I. C/m IA = IC
d) Trên tia đối của ID lấy K sao cho I là trung điểm DK. C/m AK song song DC và AK = CD
e) C/m AB = DK suy ra AB = 2.DI
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
Cho tam giác ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C) Gọi M là trung điểm của AD.Trên tia đối của tia MB lấy điểm E sao cho ME=MB, trên tia đối của tia MC lấy điểm F sao cho MF=MC.Chứng minh rằng:
a) Tam giác AME= Tam giác DMB ; AE // BC
b) 3 điểm E,A,F thẳng hàng
c)BF// CE