d: n(omega)=4*4=16
D={(2;1); (2;3); (2;4)}
=>n(D)=3
=>P(D)=3/16
Có 6 kết quả thuận lợi là 21; 23; 24; 12; 32; 42 nên xác suất là \(\dfrac{6}{16}=\dfrac{3}{8}\)
d: n(omega)=4*4=16
D={(2;1); (2;3); (2;4)}
=>n(D)=3
=>P(D)=3/16
Có 6 kết quả thuận lợi là 21; 23; 24; 12; 32; 42 nên xác suất là \(\dfrac{6}{16}=\dfrac{3}{8}\)
Giúp mình câu b ạ!
Giúp em câu 3c ạ
giải câu c mih cảm ơn ạ
3c ạ
Câu số 3 e ko biết giải
Cho hai đường thẳng (d): x+2y-1=0 và d’: x-3y+2=0.Số đo góc giữa hai đường thẳng là:
A,600
B,900
C,69034''
D,450
Cho hai đường thẳng (d): 2x-y-2=0 và (d’): 4x-2y+6=0.Khoảng cách giữa hai đường thẳng là:
\(A,-\sqrt{5}\)
\(B,2\sqrt{5}\)
\(C\sqrt{5}\)
D.5
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
1. Trong mặt phẳng toạ độ oxy, cho 2 đường thẳng delta :x+2y+4=0 và d: 2x-y+3=0. Đường tròn tâm I thuộc d cắt Ox tại A và B, cắt trục Oy tại C và D sao cho AB=CD=2. Tính khoảng cách từ điểm I đến đường thăng delta
2. trong mặt phẳng toạ độ oxy, cho tứ giác ABCD với AB:3x-4y+4=0, BC: 5+12y-52=0, CD: 5x-12y-4=0, AD:3x+4y-12=0. tìm điểm I nằm trong tứ giác ABCD sao cho d(I, AB)=d(I,BC)=d(I,CD)=d(I,DA)