\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)
\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)
\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)
\(\Leftrightarrow x^2+50x=120x+3000\)
\(\Leftrightarrow x^2-70x-3000=0\)
\(\Leftrightarrow x^2-100x+30x-3000=0\)
\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)
\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)