Bài làm:
\(\sqrt{x^2-1}-x^2+1=0\) ĐKXĐ: x ≥ 1
⇔ \(\sqrt{x^2-1}-\left(x^2-1\right)=0\)
⇔ \(\sqrt{x^2-1}-\left(\sqrt{x^2-1}\right)^2=0\)
⇔ \(\sqrt{x^2-1}.\left(1-\sqrt{x^2-1}\right)=0\)
⇔ \(\left\{{}\begin{matrix}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\sqrt{2}\end{matrix}\right.\) (thỏa mãn)
Vậy S = {1; \(\sqrt{2}\)}