\(a\)) \(ĐKXĐ:x\ne0\)
\(MTC:2x\)
Khi đó phương trình \(\Leftrightarrow2.\left(x^2-6\right)=2x^2+3x\)
\(\Leftrightarrow2x^2-12-2x^2-3x=0\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\left(nhận\right)\)
Vậy \(S=\left\{-4\right\}\)
\(b\)) \(ĐKXĐ:\left[{}\begin{matrix}x+1\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne0\end{matrix}\right.\)
\(MTC:x\left(x+1\right)\)
Khi đó phương trình \(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow2x^2+2x-2=2x^2+2x\)
\(\Leftrightarrow2x^2+2x-2-2x^2-2x=0\Leftrightarrow0x=-2\left(vônghiệm\right)\)
Vậy \(S=\varnothing\)