Lấy Logarit cơ số 3 hai vế, ta có phương trình tương đương :
\(\log_3\left(3^x.2^{x^2}\right)=\log_33^x+\log_32^{x^2}=0\)
\(\Leftrightarrow x+x^2\log32=0\)
Do đó phương trình có 2 nghiệm là \(x=0;x=\frac{-1}{\log_33}=-\log_33\)
Lấy Logarit cơ số 3 hai vế, ta có phương trình tương đương :
\(\log_3\left(3^x.2^{x^2}\right)=\log_33^x+\log_32^{x^2}=0\)
\(\Leftrightarrow x+x^2\log32=0\)
Do đó phương trình có 2 nghiệm là \(x=0;x=\frac{-1}{\log_33}=-\log_33\)
Giải phương trình :
\(2^{x+2}+3^{x+2}=2^{2x+1}+3^{2x+1}\)
Giải phương trình:
1. \(x^x=2\)
2. \(x^2=2^x\)
Giải bất phương trình:
\(a,\log_{0,1},1\left(x^2+x-2\right)>\log_{0,1}\left(x+3\right)\)
\(b,\log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2\log_3\left(2-x\right)\ge0\)
Cho bất phương trình \(8^x+3x4^x+\left(3x^2+2\right)2^x\le\left(m^3-1\right)x^3+2\left(m-1\right)x\). Số các giá trị nguyên của tham số m để phương trình trên có đúng năm nghiệm nguyên dương phân biệt là?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ạ♥
Giải phương trình :
\(2^{x+2}.3^x=4^x.5^{x-1}\)
Giải các phương trình sau:
1) \(2^x=64\)
2) \(2^x . 3^x . 5^x = 7\)
3) \(4^x + 2 . 2^x - 3 = 0\)
4) \(9^x - 4.3^x + 3 =0\)
5) \(3^{2(x+1)} + 3^{x+1} = 6\)
6) \((2 - \sqrt3)^x + (2 + \sqrt3)^x = 2\)
7) \(\log_{4} (x^2+3x) = 1\)
8) \(\log_{2} (x-2) + \log_{2} (x) = 3\)
9) \(\log^2_{3} (x-3) + \log_{3} (x-3) -6=0\)
Giải Phương trình logarit sau :
Log3(x2+x+1) - Log33x = 2x - x2-1
Giải phương trình
\(5^x+4^x=\frac{3}{2}\left(2^x+3^x+1\right)\)
Giải bất phương trình sau :
\(\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x