Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
có bao nhiêu giá trị nguyên của tham số m thuộc (-8;+vô cực) để phương trình sau có nhiều hơn 2 nghiệm phân biệt : \(x^2+x\left(x-1\right)2^{x+m}+m=\left(2x^2-x+m\right)\cdot2^{x-x^2}\)
Tổng S của tất cả các nghiệm thuộc khoảng \(\left(0;4\Pi\right)\) của phương trình \(2022^{sin^2x}-2022^{cos^2x}=2ln\left(cotx\right)\) là?
Giải thích cho mình dòng bôi vàng ở dưới với ạ, mình cảm ơn nhiều ♥
Cho phương trình \(5^x+m=log_5\left(x-m\right)\) với m là tham số. Có bao nhiêu giá trị nguyên của \(m\in\left(-20;20\right)\) để phương trình đã cho có nghiệm
Cho hàm số \(f\left(x\right)=e^{\sqrt{x^2+1}}\left(e^x-e^{-x}\right)\). Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình \(f\left(m-7\right)+f\left(\dfrac{12}{m+1}\right)< 0\) ?
cho \(0< m\ne1\). gọi (a;b) là tập hợp các giá trị của m để bất phương trình \(\log_m\left(1-8m^{-x}\right)\ge2\left(1-x\right)\) có hữu hạn nghiệm nguyên. tính b - a
Cho phương trình \(\left(4log_2^2x+log_2x-5\right)\sqrt{7^x-m}=0\). Có bao nhiêu giá trị thực của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt
cho hàm số \(f\left(x\right)=\dfrac{9^x}{9^x+3}\). Tìm m để phương trình \(f\left(3m+\dfrac{1}{4}\sin x\right)+f\left(\cos^2x\right)=1\) có đúng 8 nghiệm phân biệt thuộc [0;3pi]
Cho hàm số y=f(x) có đạo hàm là \(f'\left(x\right)=x^2+10x\) , \(\forall x\in R.\) Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left(x^4-8x^2+m\right)\)có đúng 9 điểm cực trị?
A. 16 B. 9 C. 15 D. 10
Giải thích cho mình phần bôi vàng ở dưới ạ, mình cảm ơn nhiều♥