1/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\frac{sinx}{cosx}-\frac{cosx}{sinx}+3cot^2x=5\Leftrightarrow\frac{sin^2x-cos^2x}{sinx.cosx}+3cot^2x=5\)
\(\Leftrightarrow\frac{-2cos2x}{sin2x}+3cot^22x=5\Leftrightarrow3cot^22x-2cot2x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow...\)
b/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin5x}{sinx}-\frac{cos5x}{cosx}=2cos4x-1\Leftrightarrow\frac{sin5x.cosx-cos5x.sinx}{sinx.cosx}=2cos4x-1\)
\(\Leftrightarrow\frac{sin\left(5x-x\right)}{\frac{1}{2}sin2x}=2cos4x-1\Leftrightarrow\frac{2sin4x}{sin2x}=2cos4x-1\)
\(\Leftrightarrow\frac{4sin2x.cos2x}{sin2x}=2\left(2cos^22x-1\right)-1\)
\(\Leftrightarrow4cos2x=4cos^22x-3\Leftrightarrow4cos^22x-4cos2x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=\frac{3}{2}>1\left(l\right)\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow...\)