giải phương trình:
\(\cos2x+\sqrt{3}\left(1+\sin x\right)=\frac{2\cos x+2\sin2x-2\sin x-1}{2\cos x-1}\)
Giả ẩn X với X là góc nhọn biết
\(Sin^2x-\left(1+\sqrt{3}\right)sinxcosx+\sqrt{3}\times Cos^2x=0\)
Cho 0 độ < x < 90 độ. Chứng minh rằng:
\(\sin^6x+\cos^6=1-3\sin^2x.\cos^2x\)
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)
1. Đơn giản biểu thức
a. \(\sin\alpha\cdot\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
b. \(\left(\sin^2\alpha+\cos^2\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
c. \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
Đơn giản các biểu thức sau:
\(a,\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
\(b,\sin\alpha\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
rút gọn biểu thức
C = (\(\left(\cos\alpha-\sin\alpha\right)^2+\left(cos\alpha+sin\alpha\right)^2\)
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
chứng minh bieyu thức không phụ thuộc vào X
A=\(3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+cos^6x\right)\)
các bạn giải thất chi tiết họ mình nha
mình cảm ơn nhiều