Lời giải:
\(A=n^3+3n^2+5n+3\)
\(A=n^2(n+1)+2n(n+1)+3(n+1)\)
\(A=(n+1)(n^2+2n+3)\)
Nếu \(n=3k\Rightarrow n^2+2n+3=9k^2+6k+3=3(3k^2+2k+1)\)
\(\Rightarrow n^2+2n+3\vdots 3\Rightarrow A\vdots 3\)
Nếu \(n=3k+1\Rightarrow n^2+2n+3=n(n+2)+3\)
\(=(3k+1)(3k+3)+3=3[(3k+1)(k+1)+1]\vdots 3\)
\(\Rightarrow A\vdots 3\)
Nếu \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A\vdots 3\)
Từ các TH trên suy ra A luôn chia hết cho 3 với mọi số tự nhiên $n$