bạn kham khảo ở : https://hoc24.vn//hoi-dap/question/204989.html nhé
bạn kham khảo ở : https://hoc24.vn//hoi-dap/question/204989.html nhé
cho a,b,c thuộc [0,2] và a+b+c=3 . CMR a3+b3+c3 - 3(a-1)(b-1)(c-1) nhỏ hơn bằng 9
Cho -2≤a;b;c≤3 và \(a^2+b^2+c^2=22\). Tìm GTNN của P= a+b+c
1, Cho 3 số thực không âm a, b, c và a + b + c = 3. Tìm GTLN và GTNN của biểu thức \(K=\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
2, Cho các số dương a, b thỏa mãn \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\). Tính GTNN của biểu thức \(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}\)
Cho a,b,c là các số nguyên khác 0 thỏa:
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Chứng minh rằng
\(a^3+b^3+c^3\) chia hết cho 3
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
1: Tìm GTNN: P= \(\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\). Trong đó a,b,c>0 thỏa mãn a+b \(\le\dfrac{3}{2}\)
2: Tìm cặp số nguyên x,y sao cho \(x^x+y^2+y=2x+1\)(không có j thêm)
3: a)Cho f(x)= \(x^4+ax^3+bx^2+cx+d\) biết f(1)=10; f(2)= 20; f(3)= 30. Tính M= \(\dfrac{f\left(12\right)-f\left(-8\right)}{10}+25\)
b) Tìm số có 3 cs chia hết cho 9 sao cho thương của phép chia ấy bằng tổng các bp của các chữ số ấy
@phynit, @Akai Haruma, @Ace Legona giúp mk gấp
Cho a,b,c là các số khác 0 thỏa a+b+c=0.Cmr:
\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)^2}=\dfrac{3}{4}\)
Cho các số thực dương a, b, c. Chứng minh rằng:\(\left(a^2+3\right)\)\(\left(b^2+3\right)\)\(\left(c^2+3\right)\)\(\ge4\left(a+b+c+1\right)^2\)
Cho a,b,c là các số thực thoả mãn \(^{a^2+b^2+c^2\le12}\)
Tìm GTLN của biểu thức: S=\(4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)