Cho a,b,c là các số khác 0 thỏa a+b+c=0.Cmr:
\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)^2}=\dfrac{3}{4}\)
1, Cho 3 số thực không âm a, b, c và a + b + c = 3. Tìm GTLN và GTNN của biểu thức \(K=\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
2, Cho các số dương a, b thỏa mãn \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\). Tính GTNN của biểu thức \(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}\)
a) Chứng minh với mọi số thực a,b,c a có \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Cho các số thực dương a, b, c. Chứng minh rằng:\(\left(a^2+3\right)\)\(\left(b^2+3\right)\)\(\left(c^2+3\right)\)\(\ge4\left(a+b+c+1\right)^2\)
Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)
Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).
Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)
Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)
Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)
Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)
Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!!
1: Tìm GTNN: P= \(\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\). Trong đó a,b,c>0 thỏa mãn a+b \(\le\dfrac{3}{2}\)
2: Tìm cặp số nguyên x,y sao cho \(x^x+y^2+y=2x+1\)(không có j thêm)
3: a)Cho f(x)= \(x^4+ax^3+bx^2+cx+d\) biết f(1)=10; f(2)= 20; f(3)= 30. Tính M= \(\dfrac{f\left(12\right)-f\left(-8\right)}{10}+25\)
b) Tìm số có 3 cs chia hết cho 9 sao cho thương của phép chia ấy bằng tổng các bp của các chữ số ấy
@phynit, @Akai Haruma, @Ace Legona giúp mk gấp
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
Cho các số thực a,b,c,x thay đổi theo hệ:
\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)
Tìm GTLN và GTNN của x
a)\(\left\{{}\begin{matrix}2x+\left|y\right|=3\\x-y=6\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{3}x+y=\sqrt{2}\\\sqrt{3}x-\sqrt{2}y=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\sqrt{x+3}+\sqrt{y^2-4y+4}=2\\\sqrt{x+3}-3\left|2-y\right|=1\end{matrix}\right.\)