Do \(-2\le a\le3\Rightarrow\left(a+2\right)\left(3-a\right)\ge0\)
\(\Rightarrow a-a^2+6\ge0\Rightarrow a\ge a^2-6\)
Tương tự ta có \(b\ge b^2-6\); \(c\ge c^2-6\)
Cộng vế với vế:
\(a+b+c\ge a^2+b^2+c^2-18=4\)
\(\Rightarrow P_{min}=4\) khi \(\left(a;b;c\right)=\left(3;3;-2\right)\) và các hoán vị