n thuộc N. C/m: a, \(7^{n+2}+8^{2n+1}\) chia hết cho 57
b, \(10^n-9n-1\) chia hết cho 81
Cho n thuộc N. CMR
6^2n+1 + 5^n+2 chia hết 31
câu 1 tìm các số nguyên sao cho
a)34+4 chia hết cho n-3
b)n^2 +2n+11 chia hết cho n+2
câu 2 tìm số nguyên lớn nhất
sao cho 10^2 +2n +1/n+23 là 1 số nguyên
câu 3 chứng minh tổng của n số lẻ liên tiếp chia hết cho n
CMR: với mọi số tự nhiên n :
a) \(\left(x+1\right)^{2n}-x^{2n}-2x-1\) chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
b) \(x^{4n+2}+2x^{2n+1}+1\) chia hết cho \(\left(x+1\right)^2\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}\) chia hết cho \(x^2+1\)
Chứng minh rằng :
a) \(n^3+6n^2+8n\) chia hết cho 48 với mọi số chẵn n
b) \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
1, CMR 2 số A = 2n +1 và B= \(\dfrac{n\left(n+1\right)}{2}\) là 2 số nguyên tố cùng nhau( n ϵ N)
2, Tìm n ϵ N sao cho n3 -8n2 +2n chia hết cho n2 +1
Chứng minh: a,\(n^3+6n^2+8n\) chia hết cho 48 ( với n chẵn)
b, \(n^4-10n^2+9\) chia hết cho 384 ( với n lẻ)
a) Cho a là số nguyên tố lớn hơn 3. CMR: \(a^2-1\) chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\) chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\) chia hết cho 240
1.
a, Tìm số tự nhiên n để \(n^4+4^n\) là số nguyên tố
b, Đặt A= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
CMR 4A+1 là số chính phương
c, Cho a,b,c thuộc Z. CMR (a-b)^3+(b-c)^3+(c-a)^3 chia hết cho 6