Bài 4: Rút gọn phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Hải Khánh

CMR các phân số sau là phân số tối giản với mọi số tự nhiên n

A=\(\frac{2n+3}{4n+5}\)

B=\(\frac{2n+1}{5n+2}\)

C=\(\frac{14n+3}{21n+4}\)

Trúc Giang
9 tháng 4 2020 lúc 20:41

a) Gọi d là ƯCLN (2n + 3; 4n + 5)

Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+5⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2.\left(2n+3\right)⋮d\\4n+5⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4n+6⋮d\\4n+5⋮d\end{matrix}\right.\)

=> (4n + 6) - (4n + 5) ⋮ d

=> 4n + 6 - 4n - 5 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (2n + 3; 4n + 5) = 1

=> \(\frac{2n+3}{4n+5}\) là phân số tối giản

b) Gọi d là ƯCLN (2n + 1; 5n + 2)

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\5n+2⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5.\left(2n+1\right)⋮d\\2.\left(5n+2\right)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10n+5⋮d\\10n+4⋮d\end{matrix}\right.\)

=> (10n + 5) - (10n + 4) ⋮ d

=> 10n + 5 - 10n - 4 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (2n + 1; 5n + 2) = 1

=> \(\frac{2n+1}{5n+2}\) là phân số tối giản

c/ Gọi d là ƯCLN (14n + 3; 21n + 4)

Ta có: \(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3.\left(14n+3\right)⋮d\\2.\left(21n+4\right)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=> (42n + 9) - (42n + 8) ⋮ d

=> 42n + 9 - 42n - 8 ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (14n + 3; 21n + 4) = 1

=> \(\frac{14n+3}{21n+4}\) là phân số tối giản



Các câu hỏi tương tự
trần gia khánh
Xem chi tiết
Phạm Thị Kim Quý
Xem chi tiết
Minh Tuyến Đỗ
Xem chi tiết
bin sky
Xem chi tiết
trần gia khánh
Xem chi tiết
Thanh Toan Thanh Toan
Xem chi tiết
Haa My
Xem chi tiết
Quỳnh Như
Xem chi tiết
Hà Trang
Xem chi tiết