Thiếu `n in N`
Đặt `A=(n+1)/(2n+3)(x ne -3/2)`
Giả sử A không là phân số tối giản
`=>n+1 vdots 2n+3`
`=>2n+2 vdots 2n+3`
`=>1 vdots 2n+3`
`=>2n+3 in Ư(1)={1,-1}`
`=>2n in {-2,-4}`
`=>n in {-1,-2}` loại vì `n>=0`
`=>` điều giả sử sai
`=>` A là phân số tối giản với `n in N`
Để \(\dfrac{n+1}{2n+3}\)là phân số tối giản thì \(ƯCLN\left(n+1,2n+3\right)=1\)
Gọi d là ước chung lớn nhất của n+1 và 2n+3
Ta có:
\(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow}2n+3-2\left(n+1\right)⋮d\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=1\)
Do ước chung lớn nhất của cả tử và mẫu là 1 nên phân số \(\dfrac{n+1}{2n+3}\)đó tối giản ( đpcm )